Inventario de cuerpos de agua de la Sierra Madre Occidental (México) usando SIG y percepción remota

Main Article Content

Sarahi Sandoval Espinoza
Jonathan Gabriel Escobar-Flores
Eduardo Sánchez Ortíz

Resumen

El agua dulce es un recurso fundamental para procesos ambientales y sociales,  indispensable para el surgimiento y desarrollo de la vida, por lo que mapear y monitorear las aguas superficiales tiene gran importancia para comprender los procesos hidrológicos y gestionar los recursos hídricos. El presente estudio se realizó en la cadena montañosa más grande de México, la Sierra Madre Occidental (SMO), localizada entre los estados de Chihuahua, Sonora, Sinaloa, Durango, Nayarit, Zacatecas y Jalisco. La SMO tiene un área de 251 648 km2 y cuenta con elevaciones desde 300 m hasta 3 347 m. Debido a su magnitud, orografía y posición geográfica, alberga una gran variedad de ecosistemas, lo que, a su vez, promueve una gran diversidad de especies y constituye la principal fuente de agua para el norte del país.

            Los objetivos de esta investigación fueron: 1) la detección de cuerpos de agua en la SMO utilizando imágenes de satélite Sentinel-2 de alta resolución espacial, y 2) la realización de un inventario de los cuerpos de agua en los diferentes tipos de vegetación presentes en tal sierra. En esta investigación se utilizaron 120 imágenes del satélite Sentinel-2, que se caracteriza por tener un sensor multiespectral con una resolución espacial de 10 m. A cada una de las imágenes satelitales se le realizó una corrección atmosférica mediante el método de sustracción de cuerpos oscuros. Para la detección y delimitación de cuerpos de agua se aplicó el Índice Diferencial de Agua Normalizado (NDWI, por sus siglas en inglés). Previo al proceso de validación, se realizó una tabulación cruzada entre los cuerpos de agua que se detectaron contra los polígonos de tipos de vegetación que se clasificaron de la siguiente manera: clase bosque, que incluye tipos de vegetación de pino, encino, pino-encino, encino-pino y bosque mesófilo; clase selva, que incluye selva baja y mediana caducifolia; clase bosque con vegetación secundaria herbácea y arbustiva; clase matorral; clase pastizal y clase chaparral. Estos polígonos se obtuvieron de la Serie VI del vectorial de uso de suelo y vegetación del Inegi, escala 1:250 000. Mediante un geoprocesamiento en el programa ArcGIS 10.7 se obtuvo el número de cuerpos de agua (y su superficie) detectados en cada clase de vegetación. La validación en la estimación de superficies de los cuerpos de agua se realizó con la estimación del índice de Kappa y matrices de confusión y errores, de las cuales se calcularon las superficies de cuerpos de agua y sus intervalos de confianza para cada clase de vegetación. Se detectaron 26 394 cuerpos de agua; el tipo de vegetación con más cuerpos de agua encontrados fue el correspondiente a bosques, con 46.86%, seguido por pastizales, con 21.47%. Los cuerpos de agua detectados tuvieron una superficie de entre 43 m2 y 64 km2. Los valores de los píxeles a partir del NDWI encontrados en los cuerpos de agua oscilaron entre 0.1 a 0.8, con una mediana cercana a 0.3, y los cuartiles, entre 0.2 y 0.4. En cuanto a la precisión de la detección de cuerpos de agua en los diferentes tipos de vegetación, los valores de Kappa indicaron acuerdos buenos y excelentes; los tipos de vegetación de bosque de pino-encino y mesófilo tuvieron el menor valor: K = 0.62, lo que se relacionó con sombras que se confundieron con cuerpos de agua (251 sombras). Los valores más altos de Kappa se obtuvieron en los pastizales, con K = 0.91, en donde se detectaron muy pocas sombras que se confundían con cuerpos de agua (13 sombras). La precisión global fue de 0.738, y en la matriz de error se encontró que la clase que presentó mayores errores de comisión fue el pastizal, con un valor de exactitud de usuario de 0.227. Otra clase que tuvo mayor omisión fue el matorral, con un valor de exactitud del productor de 0.351. La detección de los cuerpos de agua contribuye sustancialmente a los 800 cuerpos de agua reportados previamente para la SMO en la Serie VI del uso del suelo y vegetación en 2016.


Palabras clave: Índice Diferencial de Agua Normalizado, Sentinel-2, agua, percepción remota, tipos de vegetación

Article Details

Biografía del autor/a

Sarahi Sandoval Espinoza, CONACYT- Instituto Politécnico Nacional CIIDIR Unidad Durango

Hidrolobiologa de profesion. Catedra CONACYT asignada al Instituto Politecnico Nacional CIIDIR Unidad Durango desde el año 2016

Jonathan Gabriel Escobar-Flores, Instituto Politécnico Nacional IPN CIIDIR Durango

Profesor Titular A y presidente de la Academia de Gestión Territorial del Instituto Politecnico Nacional CIIDIR Unidad Durango

Eduardo Sánchez Ortíz, Instituto Politécnico Nacional IPN CIIDIR Durango

Doctor en Hidrologia con amplia experiencia en cuencas de México. Profesor Titular C del Instituto Politecnico Nacional, CIIDIR Unidad Durango