Validación de modelos geoestadísticos y convencionales en la determinación de la variación espacial de la fertilidad de suelos del Pacífico Sur de Costa Rica

Juan Gabriel Garbanzo-León, Brayan Alemán-Montes, Alfredo Alvarado-Hernández, Carlos Henríquez-Henríquez

Resumen

Con el fin de validar los modelos geoestadísticos y convencionales generados a partir de una base de análisis químicos de suelos, se realizó un meta-análisis de los datos y se estimó el semivariograma de mejor ajuste para utilizar el método de interpolación Kriging, que permitió representar la variabilidad espacial de la fertilidad de los suelos, de uso agropecuario, de una parte de la región Pacífico Sur de Costa Rica. Para ello se utilizó una base de datos de análisis químicos de suelos disponible y proveniente de los cantones de Corredores, Golfito y Osa, los cuales están ubicados en la región antes mencionada de Costa Rica. Las áreas que se seleccionaron para el presente estudio, estuvieron dedicadas a los cultivos de palma aceitera, arroz, forestales y otros que fueron denominados como “cultivos varios”. El área está conformada fundamentalmente por suelos de origen aluvial en las partes bajas y suelos más desarrollados en las zonas de piedemonte; dentro del área dominan suelos del orden inceptisol, ultisol, entisol y una pequeña mancha de andisol. Para la investigación se eligieron los valores obtenidos en las variables pH, acidez intercambiable, Ca, Mg, K, P, Zn, Cu, Fe y Mn, a los cuales se les realizó análisis de frecuencias, separaciones de medias, correlaciones y análisis de componentes principales (CP). Posteriormente se interpolaron los valores de las variables elegidas mediante el método de Kriging ordinario, continuadamente se realizaron 4 tipos de validaciones de la interpolación entre estas: validación de campo, validación cruzada y se procedió a calcular los errores para cada validación de las interpolaciones, estos errores se le restaron al valor original de cada observación para generar una nueva interpolación y realizar de nuevo una validación de campo y una validación cruzada. Los resultados de las interpolaciones se analizaron mediante el promedio absoluto del error (PAE), promedio del cuadrado del error (PCE), efectividad de predicción (E) y determinación (r2). Los resultados demostraron un alto coeficiente de variación principalmente para la acidez intercambiable, y los nutrimentos Mg, K, P, Zn, Cu Fe y Mn. El análisis de frecuencia mostró que todos los nutrimentos poseen distribuciones anormales y tendencias entre los percentiles 25 y 75, sin embargo, el pH mostro una distribución normal. Al separar estadísticamente las medias de los valores en los nutrimentos según cada cultivo, se encontró que en los suelos dedicados al cultivo del arroz determinó el mayor contenido de pH (6,0), Ca (26,8 cmol (+) L-1), Mg (10,6 cmol (+) L-1) y Mn (34,2 mg L-1), mientras que los dedicados al cultivo de palma aceitera mostraron mayor concentración en la acidez intercambiable (0,5 cmol (+) L-1), K (0,8 cmol (+) L-1), P (13,1 mg L-1), Zn (2,8 mg L-1) y Fe (99,8 mg L-1) significativamente (α = 0.05). Entre las correlaciones según la prueba de Spearman se encontró relaciones proporcionales entre las bases Ca, Mg, y K y una correlación inversamente proporcional entre el pH y Acidez intercambiable y K y P en los suelos. El resto de manejos tuvieron valores intermedios y muy variables. El análisis de CP explicó un 60.8% de la variación de los nutrimentos en el pacífico sur, donde se encontró una relación entre los cultivos forestales y cultivos varios entre las dimensiones CP1 y CP2, el cual relacionó el comportamiento de K y P con palma aceitera y el pH con Arroz. En las dimensiones CP2 y CP3 mostró una relación de Fe y Cu con palma aceitera y pH con cultivos varios. Se determinó que la acidez, pH y los contenidos de Mg y K asimilable, se relacionaron fuertemente de acuerdo al manejo nutricional que es característico de cada cultivo y particularmente el contenido de Ca, dependió principalmente a la génesis del suelo. La validación de las interpolaciones en los nutrimentos determinó que los parámetros PAE, PCE, E y r2 mostraron mayor precisión al restar el error de las interpolaciones, mejorándose sustancialmente la predicción. Por otro lado, la validación cruzada, luego de restar los errores de interpolación, mostró el mejor ajuste de interpolación en comparación a validación de campo y ambas validaciones, mejor estimación que sin la resta de los errores en la distribución de nutrimentos en los suelos aluviales de la costa del Pacifico Sur. Se concluye que la información de los mapas construidos a partir de las interpolaciones realizadas, representó de muy buena manera la variabilidad espacial nivel regional de las variables evaluadas, lo cual confirma que esta herramienta es funcional para trabajos importantes en el desarrollo de diagnóstico de problemas de nutrimentos en los suelos o bien condiciones de fertilidad para la región de estudio y otras regiones donde se cuente con información de suelos espacialmente referenciada.

Palabras clave

Interpolación, Kriging, Validación, Nutrimentos, Suelos.
Texto completo: PDF HTML EPUB

Herramientas del artículo

Envíe este artículo por correo electrónico (Inicie sesión)
Enviar un correo electrónico al autor/a (Inicie sesión)

Estadísticas del artículo

vistas descargas
anual histórico
vistas 242 903
descargas 848 1961